dotlah! dotlah!
  • Cities
  • Technology
  • Business
  • Politics
  • Society
  • Science
  • About
Social Links
  • zedreviews.com
  • citi.io
  • aster.cloud
  • liwaiwai.com
  • guzz.co.uk
  • atinatin.com
0 Likes
0 Followers
0 Subscribers
dotlah!
  • Cities
  • Technology
  • Business
  • Politics
  • Society
  • Science
  • About
  • Technology

NUS Research Team Sets New Efficiency Record For Solar Cell Technology

  • January 24, 2022
Total
0
Shares
0
0
0
2021 0121 Tandem solar cells-1
Asst Prof Hou Yi (right), Dr Chen Wei (left) and their team have developed perovskite/organic tandem solar cells (held by Dr Chen) that achieved a power conversion efficiency of 23.6%.

A team of researchers from the National University of Singapore (NUS) has set a new record in the power conversion efficiency of solar cells made using perovskite and organic materials. This technological breakthrough paves the way for flexible, light-weight, low cost and ultra-thin photovoltaic cells which are ideal for powering vehicles, boats, blinds and other applications.

“Technologies for clean and renewable energy are extremely important for carbon reduction. Solar cells that directly convert solar energy into electricity are among the most promising clean energy technologies. High power conversion efficiency of solar cells is critical for generating more electrical power using a limited area and this, in turn, reduces the total cost of generating solar energy,” explained lead researcher Presidential Young Professor  Hou Yi, who is from the NUS Department of Chemical and Biomolecular Engineering and also leading a “Perovskite-based Multi-junction Solar Cells group” at the Solar Energy Research Institute of Singapore at NUS.

“The main motivation of this study is to improve the power conversion efficiency of perovskite/organic tandem solar cells. In our latest work, we have demonstrated a power conversion efficiency of 23.6% – this is the best performance for this type of solar cells to date,” added Dr Chen Wei, Research Fellow at the NUS Department of Chemical and Biomolecular Engineering and the first author of this work.

This achievement is significant leap from the current power conversion rate of about 20% reported by other studies on perovskite/organic tandem solar cells, and is approaching the power conversion rate of 26.7% of silicon solar cells, which is the dominating solar technology in the current solar photovoltaic (PV) market.

This innovation was published in Nature Energy on 20 January 2022. The research was conducted in collaboration with scientists from the University of Hong Kong and Southern University of Science and Technology.

New trends in the solar world

Solar cell technology has achieved tremendous growth in recent years as a sustainable energy source. The reliability, efficiency, durability, and price of solar cells have a crucial impact on the commercial potential and large-scale implementation of solar energy projects around the world.

The conventional solar cells being used in solar power plants are based on a single-junction architecture. The practical power conversion efficiency of single-junction solar cells is limited to about 27% in industrial production. To push the frontiers of solar energy production will require novel solutions for solar cells to perform better in power conversion.

In order to raise the power conversion efficiency of solar cells to go beyond 30%, stacks of two or more absorber layers (multi-junction cells) are required. Tandem solar cells, which are made using two different types of photovoltaic materials, is a hot area of research.

In their latest project, Assistant Professor Hou and his team break new ground in the field of perovskite/organic tandem solar cells. Their discovery opens the door to thin-film tandem solar cells that are light and bendable, which could have wide-ranging applications such as for solar-powered blinds, vehicles, boats and other mobile devices.

2021 0121 Tandem solar cells-2
Solar cells made using perovskite and organic materials are flexible, light, low cost and ultra-thin. They are ideal for powering vehicles, boats, and more.

Breakthrough in power conversion efficiency

A tandem solar cell comprises two or more subcells electrically connected using interconnecting layers (ICLs). The ICL plays a critical role in determining the performance and reproducibility of a device. An effective ICL should be chemically inert, electrically conductive and optically transparent.

Although perovskite/organic tandem solar cells are attractive for next-generation thin-film photovoltaics, their efficiency lags behind other types of tandem solar cells. To address this technological challenge, Asst Prof Hou and his team developed a novel and effective ICL that reduces voltage, optical and electrical losses within the tandem solar cell. This innovation significantly improves the efficiency of the perovskite/organic tandem solar cells, achieving a power conversion rate of 23.6%.

“Our study shows the great potential of perovskite-based tandem solar cells for future commercial application of photovoltaic technology. Building on our new discovery, we hope to further improve the performance of our tandem solar cells and scale up this technology,” said Asst Prof Hou.

Total
0
Shares
Share
Tweet
Share
Share
Related Topics
  • National University of Singapore
  • NUS
  • Solar Cell
dotlah.com

Previous Article
  • Cities
  • Lah!

NParks Completes Phase One Of The Round Island Route With 75km Of Recreational Connection Stretching Across Eastern Half Of Singapore

  • January 24, 2022
View Post
Next Article
  • Cities
  • Lah!

CapitaLand Investment Named As One Of The World’s Most Sustainable Corporations On The 2022 Global 100 Index

  • January 24, 2022
View Post
You May Also Like
oracle-ibm
View Post
  • Artificial Intelligence
  • Technology

IBM and Oracle Expand Partnership to Advance Agentic AI and Hybrid Cloud

  • Dean Marc
  • May 6, 2025
View Post
  • Software
  • Technology

Canonical Releases Ubuntu 25.04 Plucky Puffin

  • Dean Marc
  • April 17, 2025
View Post
  • Artificial Intelligence
  • Technology

Tokyo Electron and IBM Renew Collaboration for Advanced Semiconductor Technology

  • Dean Marc
  • April 2, 2025
View Post
  • Artificial Intelligence
  • Technology

IBM contributes key open-source projects to Linux Foundation to advance AI community participation

  • dotlah.com
  • March 22, 2025
View Post
  • Artificial Intelligence
  • Technology

Mitsubishi Motors Canada Launches AI-Powered “Intelligent Companion” to Transform the 2025 Outlander Buying Experience

  • Dean Marc
  • March 10, 2025
View Post
  • Technology

New Meta for Education Offering is Now Generally Available

  • Dean Marc
  • February 26, 2025
View Post
  • Artificial Intelligence
  • Technology

Deep dive into AI with Google Cloud’s global generative AI roadshow

  • dotlah.com
  • February 18, 2025
View Post
  • Artificial Intelligence
  • Technology

How the UK’s plans for AI could derail net zero – the numbers explained

  • dotlah.com
  • February 9, 2025


Trending
  • super-trees-1213_TREES-2-WEB 1
    • Cities
    To Improve City Life, Plant These 17 ‘Super Trees’
    • December 16, 2021
  • taipei taiwan skyline 2
    • Cities
    The Best And Worst Cities For Expats To Live In 2020
    • October 18, 2020
  • 3
    • Technology
    SingHealth And A*STAR Co-developed Smart Chatbot To Enhance Care For COVID-19 Patients At Community Care Facilities
    • June 30, 2020
  • nobel-prize-popular-physics-prize-2024-figure1 4
    • Artificial Intelligence
    • Featured
    • Features
    • Machine Learning
    • Software
    • Technology
    They Used Physics To Find Patterns In Information
    • October 9, 2024
  • 5
    • Technology
    Career Certificates For Singapore’s Future Economy
    • January 20, 2022
  • 6
    • Cities
    How Cities Around The World Are Handling COVID-19 – And Why We Need To Measure Their Preparedness
    • March 18, 2020
  • 7
    • People
    • World Events
    False Information Fuels Fear During Disease Outbreaks: There Is An Antidote
    • February 13, 2020
  • 8
    • Lah!
    UOB Raises More Than S$1.65 Million In A Month In Its Latest COVID-19 Relief Effort
    • June 24, 2020
  • 9
    • Lah!
    New Therapeutic Garden At Telok Blangah Hill Park
    • March 10, 2020
  • Painting | Art | Landscape 10
    • Features
    • Gears
    • People
    The Soul Of Craftsmanship. Ten Timeless Virtues for Artists and Artisans.
    • June 22, 2023
  • 11
    • Technology
    Microsoft Launches First Asia Pacific Public Sector Cyber Security Executive Council Across Seven Markets In The Region
    • May 31, 2021
  • cpu-computer-chip-pexels-athena-2582937 12
    • People
    • Technology
    How Technology Is Enhancing the Lives of People with Disabilities
    • December 17, 2021
Trending
  • college-of-cardinals-2025 1
    The Definitive Who’s Who of the 2025 Papal Conclave
    • May 8, 2025
  • conclave-poster-black-smoke 2
    The World Is Revalidating Itself
    • May 7, 2025
  • oracle-ibm 3
    IBM and Oracle Expand Partnership to Advance Agentic AI and Hybrid Cloud
    • May 6, 2025
  • 4
    Conclave: How A New Pope Is Chosen
    • April 25, 2025
  • 5
    Canonical Releases Ubuntu 25.04 Plucky Puffin
    • April 17, 2025
  • 6
    Mathematicians uncover the logic behind how people walk in crowds
    • April 3, 2025
  • 7
    Tokyo Electron and IBM Renew Collaboration for Advanced Semiconductor Technology
    • April 2, 2025
  • 8
    Tariffs, Trump, and Other Things That Start With T – They’re Not The Problem, It’s How We Use Them
    • March 25, 2025
  • 9
    IBM contributes key open-source projects to Linux Foundation to advance AI community participation
    • March 22, 2025
  • PiPiPi 10
    The Unexpected Pi-Fect Deals This March 14
    • March 14, 2025
Social Links
dotlah! dotlah!
  • Cities
  • Technology
  • Business
  • Politics
  • Society
  • Science
  • About
Connecting Dots Across Asia's Tech and Urban Landscape

Input your search keywords and press Enter.