dotlah! dotlah!
  • Cities
  • Technology
  • Business
  • Politics
  • Society
  • Science
  • About
Social Links
  • zedreviews.com
  • citi.io
  • aster.cloud
  • liwaiwai.com
  • guzz.co.uk
  • atinatin.com
0 Likes
0 Followers
0 Subscribers
dotlah!
  • Cities
  • Technology
  • Business
  • Politics
  • Society
  • Science
  • About
  • Cities

Extreme Heat Affects 2 Billion People Living in Cities

  • October 27, 2021
extreme-heat-cities-1600
“Our study reveals that exposure to extreme heat in urban areas is much more widespread—and increasing in many more areas—than we had previously realized,” says Kelly Caylor. “Almost one in five people on Earth experienced increases in exposure to urban heat over the past 30 years.” (Credit: Getty Images)
Total
0
Shares
0
0
0

Extreme heat already affects almost two billion urban residents around the world, according to a new study.

The new research is the first to examine in fine detail global trends in extreme heat exposure across urban areas. The study spanned more than 13,000 settlements over nearly three and a half decades.

The authors found that exposure to dangerous temperatures increased by 200% since the mid 1980s, with poor and marginalized people particularly at risk.

extreme-heat-cities-1600
“Our study reveals that exposure to extreme heat in urban areas is much more widespread—and increasing in many more areas—than we had previously realized,” says Kelly Caylor. “Almost one in five people on Earth experienced increases in exposure to urban heat over the past 30 years.” (Credit: Getty Images)

“Our study reveals that exposure to extreme heat in urban areas is much more widespread—and increasing in many more areas—than we had previously realized,” says coauthor Kelly Caylor, director of the Earth Research Institute at the University of California, Santa Barbara. “Almost one in five people on Earth experienced increases in exposure to urban heat over the past 30 years.”

The study in the Proceedings of the National Academy of Sciences is only the first of many that will delve into the rising threat of extreme heat and its impacts on society and the environment.

Lead author Cascade Tuholske was initially curious how climate change could directly affect urban food security, especially among low-income households.

“Many of these people are not necessarily food insecure in terms of, say, a calorie deficit, but they spend a huge percentage of their income on food,” he explains. This leaves them vulnerable, especially since extreme heat often drastically reduces labor output, and in turn, income and food security.

As a result, understanding urban food security required figuring out how many people extreme heat affects.

“I went through the literature and realized that we had no baseline understanding of where extreme heat is impacting individuals in cities at fine scales,” says Tuholske, now a postdoctoral research scientist at Columbia University’s Earth Institute.

EXTREME HEAT AROUND THE WORLD

The authors encountered two main challenges while piecing together this baseline. The first was obtaining reasonably accurate population estimates. Researchers don’t actually know how many people live on Earth, Tuholske explains, because there are many places where population counts aren’t feasible due to geography, infrastructure, or governance.

Tuholske gathered his population data from a global human settlement database produced by the European Commission Joint Research Centre (JRC). The commission estimates the distribution of urban populations using the finest available census data combined with Landsat remote imaging techniques.

The second major challenge was obtaining the meteorological data to characterize heat exposure around the globe. Fortunately, UC Santa Barbara’s Climate Hazards Center recently created a new dataset with this information: the Climate Hazards InfraRed Temperature with Stations (CHIRTS).

“CHIRTS is the temperature analog to our very widely used CHIRPS precipitation product,” says coauthor Chris Funk, director of the Climate Hazards Center. “Like CHIRPS, it combines very high-resolution maps of long-term averages with time-varying satellite and station observations.” The dataset provided exactly the type of information the authors needed for this paper.

GLOBAL HEAT MAPS

Throughout their analysis, the researchers used a metric called the wet bulb globe temperature (WBGT) to quantify extreme heat. WBGT is an index that accounts for temperature, humidity, wind speed, and radiant heat. Similar to a “feels like” index, it was developed to more accurately reflect how ambient conditions affect the human body.

To calculate this, Tuholske divided the Earth’s surface with a grid. For each cell, he used his models and datasets to calculate the maximum temperature and relative humidity for each day from 1983 through 2016. This enabled him to calculated the WBGT.

Next, Tuholske overlayed this grid on the map of urban populations. He chose a wet bulb globe temperature of 30° Celsius (86° Fahrenheit) as the threshold for extreme heat exposure. This value is commonly used as it’s considered to pose a high risk of occupational heat-related illness by the International Standards Organization.

For each year, he counted how many days each cell exceeded a WBGT of 30°C, and then multiplied that by the population in that cell. The result was the number of person-days per year of extreme heat exposure at a resolution of 0.05° of latitude by 0.05° of longitude.

“We found that, in 34 years, urban extreme heat exposure increased 200% globally,” Tuholske says. The researchers were further able to distinguish between the contributions from population growth and rising temperatures. They found that population growth contributed two-thirds of the year-to-year increase, with warming accounting for one-third.

FEW OPTIONS TO ESCAPE THE HEAT

They plan to further distill the independent inputs from climate change versus the urban heat island effect in an upcoming paper.

“This study emphasizes that extreme heat exposure is already increasing for about half of all the world’s cities and towns,” says Funk. “And population growth is a major driver of increased risk. We need to think about these demographic factors as well as climate change.”

For example, economically disadvantaged and marginalized people are particularly vulnerable to extreme heat exposure, the authors state. In addition to their risk of food insecurity, these people have fewer options to mitigate their exposure to extreme heat, Caylor explains. They also tend to live in urban areas prone to more severe and prolonged bouts of extreme temperatures.

Indeed, the threat of extreme heat varies at regional and even city levels, a topic the authors plan to examine further in the future. About a quarter of the global change in extreme heat exposure came from just 25 urban settlements. The top four were: Dhaka, Bangladesh; Delhi, India; Kolkata, India; and Bangkok, Thailand.

6,000 CITIES

This issue is far from limited to big cities. Nearly 6,000 municipalities had a significant increase in extreme heat exposure, the authors say.

And the impact of heat on a population varies widely, affecting more than simply those areas highlighted in this study. For instance, the 2021 summer heat wave in the Pacific Northwest was dangerous because the region isn’t adapted to deal with high temperatures.

“There isn’t much air conditioning in Seattle or Portland,” Tuholske says. So, while conditions may not have rivaled cities like Delhi or Dubai, the impact was still severe.

That’s why the authors can’t extrapolate this study’s results to outcomes for a specific city, Tuholske explains. That said, the paper and the datasets it draws on lay the foundation for a profusion of future work.

While Tuholske chose to focus on urban heat exposure for this study, the wealth of data available will enable researchers to investigate an array of different topics, trends, and impacts.

The Climate Hazards Center hopes to start producing operational updates for the CHIRTS dataset by the end of 2021. The update will also include climate change projections for 2030 and 2050.

Funk envisions ultimately creating a combined observation and forecast system that could be integrated into a heat wave early warning system.

The authors are well positioned to make this happen, as both the University of California, Santa Barbara’s Climate Hazards Center and Columbia’s Earth Institute contribute to early warning systems for extreme weather events. The Climate Hazards Center already has such a system in place for droughts, but is working on expanding its capacity to anticipate extreme heat and precipitation.

Source: UC Santa Barbara

Original Study DOI: 10.1073/pnas.2024792118


Republished from Futurity

Total
0
Shares
Share
Tweet
Share
Share
majulah

Previous Article
  • Lah!

CapitaLand And Shopee Return With 11.11 Campaign, In Continuing Joint Effort To Digitalise Singapore’s Retail Sector

  • October 21, 2021
View Post
Next Article
  • Lah!
  • Technology

Connecting Our Content Creators To Global Media Players And Audiences Singapore Media Festival 2021: Connecting Our Content Creators To Global Media Players And Audiences

  • October 27, 2021
View Post
You May Also Like
View Post
  • Cities
  • Research

Mathematicians uncover the logic behind how people walk in crowds

  • dotlah.com
  • April 3, 2025
“Toyota Woven City,” a Test Course for Mobility, Completes Phase 1 Construction and Prepares for Launch
View Post
  • Cities
  • Technology

“Toyota Woven City,” a Test Course for Mobility, Completes Phase 1 Construction and Prepares for Launch

  • John Francis
  • January 6, 2025
View Post
  • Cities

Popes were once confined to Rome. Now they travel the world – and Francis’ current journey is particularly significant

  • dotlah.com
  • September 13, 2024
Singapore
View Post
  • Cities
  • Economy

South Africa’s new pension rules: Australia, Chile and Singapore show how personal savings can grow the economy

  • dotlah.com
  • August 30, 2024
Singapore
View Post
  • Artificial Intelligence
  • Cities
  • Technology

These 5 cities are making innovative use of generative AI

  • dotlah.com
  • July 29, 2024
dotlah-singapore-kharl-anthony-paica-Btf-M-Hu8Xw-unsplash
View Post
  • Artificial Intelligence
  • Cities
  • Technology

These 4 cities are making innovative use of generative AI

  • dotlah.com
  • May 16, 2024
Fashion. Fashion walk.
View Post
  • Cities
  • Features

French Chic. An intro to Parisian Fashion.

  • John Francis
  • May 10, 2024
dotlah-sentosa-joshua-tsu-4sl0QBBHRRA-unsplash
View Post
  • Cities
  • Lah!

Discover Sentosa anew through partnership of iconic brands

  • dotlah.com
  • May 10, 2024


Trending
  • 1
    • Lah!
    Singapore Substantially Concludes Negotiations For Digital Economy Partnership Agreement With Chile And New Zealand
    • January 22, 2020
  • 2
    • Society
    CapitaLand Sets Up RMB10 Million Healthcare Fund To Support Relief Efforts In China
    • January 28, 2020
  • 3
    • People
    • World Events
    Coronavirus: Why People Are Panic Buying Toilet Paper And How To Stop It
    • March 8, 2020
  • hospital-hallway-5979689_1920 4
    • Features
    • People
    Infection Prevention: Latest Trends In Hospital Sanitation
    • November 27, 2021
  • 5
    • Lah!
    Air Pollution Drives Residential Electricity Demand
    • August 18, 2020
  • 6
    • Lah!
    • Technology
    ASEAN Small Businesses Count On Technology To Beat COVID-19
    • July 3, 2020
  • 7
    • Lah!
    • Technology
    MAS Partners IMF, World Bank And Others To launch Global Challenge For Retail CBDC Solutions
    • June 28, 2021
  • thanksgiving-turkey-claudio-schwarz-fXxsNyiqTio-unsplash 8
    • Cities
    Will Supply Chain Troubles Ruin Your Thanksgiving?
    • November 18, 2021
  • deanmarc-apple-intelligence-oped-20241203 9
    • Artificial Intelligence
    • dotZero
    • Featured
    • Features
    • Machine Learning
    • Op-Ed
    • Outsights
    • Technology
    Apple Intelligence – Innovation Enabling Mediocrity?
    • December 4, 2024
  • 10
    • Lah!
    Gov.sg Launches New Channels To Keep The Public Informed About COVID-19
    • April 4, 2020
  • 11
    • Lah!
    • Technology
    Age Is No Barrier To Digitalising
    • June 23, 2021
  • 12
    • Lah!
    • Science
    Why Some Patients Recover Faster From The Side-Effects Of Antibiotic Treatment
    • July 10, 2020
Trending
  • college-of-cardinals-2025 1
    The Definitive Who’s Who of the 2025 Papal Conclave
    • May 8, 2025
  • conclave-poster-black-smoke 2
    The World Is Revalidating Itself
    • May 7, 2025
  • oracle-ibm 3
    IBM and Oracle Expand Partnership to Advance Agentic AI and Hybrid Cloud
    • May 6, 2025
  • 4
    Conclave: How A New Pope Is Chosen
    • April 25, 2025
  • 5
    Canonical Releases Ubuntu 25.04 Plucky Puffin
    • April 17, 2025
  • 6
    Mathematicians uncover the logic behind how people walk in crowds
    • April 3, 2025
  • 7
    Tokyo Electron and IBM Renew Collaboration for Advanced Semiconductor Technology
    • April 2, 2025
  • 8
    Tariffs, Trump, and Other Things That Start With T – They’re Not The Problem, It’s How We Use Them
    • March 25, 2025
  • 9
    IBM contributes key open-source projects to Linux Foundation to advance AI community participation
    • March 22, 2025
  • PiPiPi 10
    The Unexpected Pi-Fect Deals This March 14
    • March 14, 2025
Social Links
dotlah! dotlah!
  • Cities
  • Technology
  • Business
  • Politics
  • Society
  • Science
  • About
Connecting Dots Across Asia's Tech and Urban Landscape

Input your search keywords and press Enter.