dotlah! dotlah!
  • Cities
  • Technology
  • Business
  • Politics
  • Society
  • Science
  • About
Social Links
  • zedreviews.com
  • citi.io
  • aster.cloud
  • liwaiwai.com
  • guzz.co.uk
  • atinatin.com
0 Likes
0 Followers
0 Subscribers
dotlah!
  • Cities
  • Technology
  • Business
  • Politics
  • Society
  • Science
  • About
  • Society

Is The Coronavirus Outbreak As Bad As SARS Or The 2009 Influenza Pandemic? A Biologist Explains The Clues

  • February 1, 2020
Photo: AFP
Total
0
Shares
0
0
0

As the new coronavirus continues to cross international borders, the two key questions on public health officials’ minds are: ‘How deadly is it?’ and ‘Can it be contained?’.

A man wearing a face mask prays at Erawan shrine in Bangkok, Thailand, Jan. 29, 2020. Thailand has five reported cases of coronavirus. AP Photo/Gemunu Amarasinghe

The two outbreaks in recent memory that give the most insight into these questions are the 2002-2003 SARS outbreak, which spread from China to 26 other countries but was contained after eight months, and the 2009 H1N1 influenza pandemic, which originated in Mexico and spread globally despite all containment efforts.

The severity and mortality of a novel emerging virus, which we scientists in this case are calling 2019-nCoV, are very difficult to judge when new data are coming in on a daily basis. During the 2009 influenza pandemic, the earliest reports listed 59 deaths from approximately 850 suspected cases, which suggested an extremely high case fatality of 7%.

However, the initially reported information of 850 cases was a gross underestimate. This was simply due to a much larger number of mild cases that did not report to any health system and were not counted. After several months – when pandemic data had been collected from many countries experiencing an epidemic wave – the 2009 influenza turned out to be much milder than was thought in the initial weeks. Its case fatality was lower than 0.1% and in line with other known human influenza viruses.

The case fatality for SARS, during its eight months of circulation, was just under 10%.

Is the current epidemic more similar in severity and transmissibility to the SARS outbreak or the 2009 flu pandemic? I am a professor of biology who studies the evolution and epidemiology of infectious disease, and in my view, in late January 2020, we do not yet have enough solid evidence to answer this question. I am optimistic that the scientific community’s sharing ethos and rapid data analytics that we have seen over the past two weeks will soon generate the needed data.

Initial fatality numbers don’t tell true case fatality

As with the 2009 pandemic, initial reports from Wuhan described small numbers of both deaths and cases. On January 20, there were six deaths out of 282 confirmed cases. By January 28, there were 106 deaths from about 4,500 confirmed cases.

These numbers taken alone suggest a case fatality rate of around 2%, very high for a respiratory virus. But the true number of infected individuals circulating in the population is not known and is likely to be much higher than 4,500. There may be 50,000 or 100,000 additional cases in Wuhan that have gone undetected, and, if this is the case, it would put the case fatality of 2019-nCoV infections in the range of 0.1% to 0.2%.

During these early stages of the outbreak investigation, it is difficult to estimate the lethality, or deadliness, of this new virus.

So, with all of this uncertainty, how much effort should public health officials put into containment, quarantine and isolation activities? Should all airports be implementing temperature screening for incoming passengers? There are no easy answers to these questions, as there are only a few historical examples to look back on. And, none of them is guaranteed to be a template for this year’s 2019-nCoV epidemic.

Students sanitize hands to avoid the contact of coronavirus before their morning class at a high school in Phnom Penh, Cambodia, Jan. 28, 2020. AP Photo/Heng Sinith

Is this virus silent or deadly?

Fortunately for human beings, a pathogen like 2019-nCoV cannot have its cake and eat it too. The virus cannot be both deadly and undetectable. To illustrate, we can consider the hypothetical examples of a severe and a non-severe respiratory virus.

With a more severe symptoms profile, a respiratory infection will have more sudden onset, earlier symptoms, a higher chance of severity and death, and it will probably cause patients to report to hospitals at an earlier stage of infection. An outbreak of a respiratory virus like this will typically be deadly but containable.

With a less severe symptoms profile, patients may stay in an asymptomatic or mildly symptomatic state for a long time, symptoms appearance may be more gradual than sudden, and progression to hospitalization and death would be rare. An infection like this is difficult to detect and thus difficult to control, but fortunately it is much less lethal.

A key characteristic to examine in these two disease profiles is whether symptoms appear before transmissibility – i.e. at a point when patients are not yet able to infect others – or the other way around. For SARS, symptoms usually appeared before transmissibility. This feature made SARS containable.

For the 2009 H1N1 pandemic, transmissibility appeared about one day before symptoms. This meant that even the best control measures missed 20% of transmitting patients, simply because they showed no symptoms.

Can international spread be contained?

For the 2019-nCoV epidemic, it appears that individuals can transmit the virus before being symptomatic. However, at this early stage, this is far from certain.

Can a pathogen like this have its international spread controlled? Will airport screening and isolation of febrile cases be effective at slowing down the initial outbreak or perhaps containing it entirely?

The Hospital for Tropical Diseases in Ho Chi Minh City, Vietnam, where the author worked during the 2009 flu pandemic. Maciej Boni, CC BY-SA

To answer this question, we can look at data from containment efforts during the 2009 pandemic. In 2009 I was working at the Hospital for Tropical Diseases in Ho Chi Minh City, where containment efforts relied on a live synthesis of airline passenger data, symptoms data, isolation data, and diagnostics data that were coming in on a daily basis.

Data were assembled in Ho Chi Minh City for the first three months of the pandemic, covering a total of 760,000 airline passengers arriving from abroad. About 1,000 incoming travelers were suspected of being influenza-positive. That’s about one passenger for every three incoming flights. The majority of these virus-positive individuals were isolated at the Hospital for Tropical Diseases and treated.

During the early stages of the pandemic, about 80% of these patients’ “infectious days” were spent in isolation, effectively cutting the virus’s transmission rate by a factor of five.

On the one hand, a containment effort like this can be viewed as a success. The virus’s entry into the city was slowed down, and an epidemic that seemed imminent in mid-June was held off until late July.

On the other hand, with about 200 influenza-positive cases coming in during the three-month containment effort, there were likely dozens of cases that came in undetected in their “pre-symptomatic” stage. The influenza pandemic was not destined to be locally containable.

At this moment, 2019-nCoV looks to me like its severity and transmission profile is somewhere between SARS and the 2009 H1N1 influenza.

If this is accurate, airport screening, case isolation, contact tracing and social distancing efforts may be enough in some cities to delay or fend off the arriving stream of new cases. In the next month or two, we will see how easily newly introduced seed cases are able to establish local epidemics outside the Chinese mainland.

With a little luck some cities may be able to control their outbreaks. With open scientific collaboration we may learn which containment strategies work best, in preparation for our next pandemic later this decade.

The Conversation

Maciej F. Boni, Associate Professor of Biology, Pennsylvania State University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Total
0
Shares
Share
Tweet
Share
Share
Related Topics
  • Coronavirus
  • Infectious diseases
  • SARS
  • Wuhan Coronavirus
majulah

Previous Article
  • Lah!

All Nippon Airways And Singapore Airlines Deepen Partnership With Joint Venture Agreement

  • February 1, 2020
View Post
Next Article
  • People
  • World Events

Is The Coronavirus Outbreak As Bad As SARS Or The 2009 Influenza Pandemic? A Biologist Explains The Clues

  • February 1, 2020
View Post
You May Also Like
View Post
  • Cities
  • Lah!
  • Society

NUS Computing Establishes Sea Olympiad Scholarship To Attract And Nurture Top Talents In Computer Studies

  • dotlah.com
  • February 27, 2022
View Post
  • Cities
  • Lah!
  • Society

Joint Study: Diverse Leadership Brings Better Firm Performance

  • dotlah.com
  • February 23, 2022
View Post
  • Lah!
  • Society

Community And Mentorship Help Women Entrepreneurs Thrive

  • dotlah.com
  • November 23, 2021
View Post
  • Lah!
  • Society

ST Engineering Champions Employee Wellness, Raises Funds For Charity And Launches Women Support Group

  • dotlah.com
  • November 14, 2021
View Post
  • Lah!
  • Society

NUS Honours 40 Alumni For Outstanding Contributions To Alma Mater And Society

  • dotlah.com
  • November 7, 2021
View Post
  • Cities
  • Lah!
  • Society

The COVID-19 Pandemic Has Made Many Singaporeans Adopt Better Financial Habits

  • dotlah.com
  • November 3, 2021
View Post
  • Lah!
  • Society

A Cleaning Revolution: How JCS-Echigo Partnered A*STAR To Clean Faster And Smarter

  • dotlah.com
  • October 16, 2021
View Post
  • Lah!
  • Society

Singapore 100 Women In Tech 2021

  • dotlah.com
  • October 16, 2021


Trending
  • 1
    • Lah!
    • Technology
    Age Is No Barrier To Digitalising
    • June 23, 2021
  • 2
    • People
    • World Events
    We’re In Danger Of Drowning In A Coronavirus ‘Infodemic’. Here’s How We Can Cut Through The Noise
    • February 13, 2020
  • 3
    • Lah!
    What You Need To Know About Davos 2020: How To Save The Planet
    • January 21, 2020
  • 4
    • Technology
    Apple expands developer support and resources
    • June 7, 2024
  • 5
    • Cities
    • Society
    Keppel Announces $4.2 Million Package To Support National Efforts To Combat COVID-19
    • March 20, 2020
  • airport-airplane-tourist-luggage-air-travel-jeshoots-com-722888-unsplash 6
    • People
    The Most Influential People In Global Travel Today
    • October 19, 2021
  • driving-jan-kronies-mpSeLIXMnpc-unsplash 7
    • Cities
    How To Drive Safely And Reduce Your Risk Of Accidents
    • March 19, 2021
  • 8
    • Lah!
    Singapore And The Eurasian Economic Union Deepen Economic Relations Through A Free Trade Agreement
    • October 2, 2019
  • 9
    • Cities
    • Technology
    ABB And Keppel Sign Memorandum For Digital Collaboration
    • March 7, 2022
  • damir-spanic-09znJJdtZFc-unsplash 10
    • Cities
    • People
    Sleep And The City: How To Improve Your Sleep When Living In A City
    • September 7, 2021
  • 11
    • Cities
    This ‘Self-Sufficient’ Chinese City Is Being Built With Future Pandemics In Mind
    • September 14, 2020
  • 12
    • Technology
    Some 7 Mistakes Of Scrum Standups
    • July 22, 2017
Trending
  • college-of-cardinals-2025 1
    The Definitive Who’s Who of the 2025 Papal Conclave
    • May 8, 2025
  • conclave-poster-black-smoke 2
    The World Is Revalidating Itself
    • May 7, 2025
  • oracle-ibm 3
    IBM and Oracle Expand Partnership to Advance Agentic AI and Hybrid Cloud
    • May 6, 2025
  • 4
    Conclave: How A New Pope Is Chosen
    • April 25, 2025
  • 5
    Canonical Releases Ubuntu 25.04 Plucky Puffin
    • April 17, 2025
  • 6
    Mathematicians uncover the logic behind how people walk in crowds
    • April 3, 2025
  • 7
    Tokyo Electron and IBM Renew Collaboration for Advanced Semiconductor Technology
    • April 2, 2025
  • 8
    Tariffs, Trump, and Other Things That Start With T – They’re Not The Problem, It’s How We Use Them
    • March 25, 2025
  • 9
    IBM contributes key open-source projects to Linux Foundation to advance AI community participation
    • March 22, 2025
  • PiPiPi 10
    The Unexpected Pi-Fect Deals This March 14
    • March 14, 2025
Social Links
dotlah! dotlah!
  • Cities
  • Technology
  • Business
  • Politics
  • Society
  • Science
  • About
Connecting Dots Across Asia's Tech and Urban Landscape

Input your search keywords and press Enter.