dotlah! dotlah!
  • Cities
  • Technology
  • Business
  • Politics
  • Society
  • Science
  • About
Social Links
  • zedreviews.com
  • citi.io
  • aster.cloud
  • liwaiwai.com
  • guzz.co.uk
  • atinatin.com
0 Likes
0 Followers
0 Subscribers
dotlah!
  • Cities
  • Technology
  • Business
  • Politics
  • Society
  • Science
  • About
  • Machine Learning
  • Research
  • Science
  • Technology

Computer Vision System Marries Image Recognition And Generation

  • July 3, 2023
MIT MAGE
A unified vision system known as MAsked Generative Encoder (MAGE), developed by researchers at MIT and Google, could be useful for many things, like finding and classifying objects in an image, learning from just a few examples, generating images with specific conditions such as text or class, editing existing images, and more. Image: Alex Shipps/MIT CSAIL via Midjourney
Total
0
Shares
0
0
0

MAGE merges the two key tasks of image generation and recognition, typically trained separately, into a single system.

Rachel Gordon | MIT CSAIL

MIT MAGE
A unified vision system known as MAsked Generative Encoder (MAGE), developed by researchers at MIT and Google, could be useful for many things, like finding and classifying objects in an image, learning from just a few examples, generating images with specific conditions such as text or class, editing existing images, and more. Image: Alex Shipps/MIT CSAIL via Midjourney

Computers possess two remarkable capabilities with respect to images: They can both identify them and generate them anew. Historically, these functions have stood separate, akin to the disparate acts of a chef who is good at creating dishes (generation), and a connoisseur who is good at tasting dishes (recognition).

Yet, one can’t help but wonder: What would it take to orchestrate a harmonious union between these two distinctive capacities? Both chef and connoisseur share a common understanding in the taste of the food. Similarly, a unified vision system requires a deep understanding of the visual world.

Now, researchers in MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) have trained a system to infer the missing parts of an image, a task that requires deep comprehension of the image’s content. In successfully filling in the blanks, the system, known as the Masked Generative Encoder (MAGE), achieves two goals at the same time: accurately identifying images and creating new ones with striking resemblance to reality. 

This dual-purpose system enables myriad potential applications, like object identification and classification within images, swift learning from minimal examples, the creation of images under specific conditions like text or class, and enhancing existing images.

Unlike other techniques, MAGE doesn’t work with raw pixels. Instead, it converts images into what’s called “semantic tokens,” which are compact, yet abstracted, versions of an image section. Think of these tokens as mini jigsaw puzzle pieces, each representing a 16×16 patch of the original image. Just as words form sentences, these tokens create an abstracted version of an image that can be used for complex processing tasks, while preserving the information in the original image. Such a tokenization step can be trained within a self-supervised framework, allowing it to pre-train on large image datasets without labels. 

Now, the magic begins when MAGE uses “masked token modeling.” It randomly hides some of these tokens, creating an incomplete puzzle, and then trains a neural network to fill in the gaps. This way, it learns to both understand the patterns in an image (image recognition) and generate new ones (image generation).

“One remarkable part of MAGE is its variable masking strategy during pre-training, allowing it to train for either task, image generation or recognition, within the same system,” says Tianhong Li, a PhD student in electrical engineering and computer science at MIT, a CSAIL affiliate, and the lead author on a paper about the research. “MAGE’s ability to work in the ‘token space’ rather than ‘pixel space’ results in clear, detailed, and high-quality image generation, as well as semantically rich image representations. This could hopefully pave the way for advanced and integrated computer vision models.” 

Apart from its ability to generate realistic images from scratch, MAGE also allows for conditional image generation. Users can specify certain criteria for the images they want MAGE to generate, and the tool will cook up the appropriate image. It’s also capable of image editing tasks, such as removing elements from an image while maintaining a realistic appearance.

Recognition tasks are another strong suit for MAGE. With its ability to pre-train on large unlabeled datasets, it can classify images using only the learned representations. Moreover, it excels at few-shot learning, achieving impressive results on large image datasets like ImageNet with only a handful of labeled examples.

The validation of MAGE’s performance has been impressive. On one hand, it set new records in generating new images, outperforming previous models with a significant improvement. On the other hand, MAGE topped in recognition tasks, achieving an 80.9 percent accuracy in linear probing and a 71.9 percent 10-shot accuracy on ImageNet (this means it correctly identified images in 71.9 percent of cases where it had only 10 labeled examples from each class).

Despite its strengths, the research team acknowledges that MAGE is a work in progress. The process of converting images into tokens inevitably leads to some loss of information. They are keen to explore ways to compress images without losing important details in future work. The team also intends to test MAGE on larger datasets. Future exploration might include training MAGE on larger unlabeled datasets, potentially leading to even better performance. 

“It has been a long dream to achieve image generation and image recognition in one single system. MAGE is a groundbreaking research which successfully harnesses the synergy of these two tasks and achieves the state-of-the-art of them in one single system,” says Huisheng Wang, senior staff software engineer of humans and interactions in the Research and Machine Intelligence division at Google, who was not involved in the work. “This innovative system has wide-ranging applications, and has the potential to inspire many future works in the field of computer vision.” 

Li wrote the paper along with Dina Katabi, the Thuan and Nicole Pham Professor in the MIT Department of Electrical Engineering and Computer Science and a CSAIL principal investigator; Huiwen Chang, a senior research scientist at Google; Shlok Kumar Mishra, a University of Maryland PhD student and Google Research intern; Han Zhang, a senior research scientist at Google; and Dilip Krishnan, a staff research scientist at Google. Computational resources were provided by Google Cloud Platform and the MIT-IBM Watson AI Lab. The team’s research was presented at the 2023 Conference on Computer Vision and Pattern Recognition.

Reprinted with permission of MIT News (http://news.mit.edu/)

Total
0
Shares
Share
Tweet
Share
Share
Related Topics
  • Google
  • image generation
  • Machine Learning
  • MAGE
  • MAsked Generative Encoder
  • MIT
  • MIT CSAIL
John Francis

Previous Article
USA flag
  • Featured
  • People

Stars, Stripes, And Service. Exploring The Hierarchies And Heroes Of The U.S. Military

  • July 3, 2023
View Post
Next Article
usa-flag-justin-cron-_gtwjIzQLq4-unsplash
  • Features
  • People
  • World Events

Stars, Stripes, And Service. Exploring The Hierarchies And Heroes Of The U.S. Military

  • July 3, 2023
View Post
You May Also Like
View Post
  • Gears
  • Technology

Apple Vision Pro upgraded with the powerful M5 chip and comfortable Dual Knit Band

  • Dean Marc
  • October 15, 2025
View Post
  • Gears
  • Technology

Meet Samsung Galaxy Tab S11 Series: Packing Everything You Expect From a Premium Tablet

  • Dean Marc
  • September 4, 2025
View Post
  • Technology

Malaysia’s ‘ASEAN Shenzhen’ needs some significant legal reform to take off — here’s how

  • dotlah.com
  • August 25, 2025
View Post
  • Gears
  • Technology

Samsung Electronics Debuts Odyssey G7 Monitors, Showcasing Top Games on Its Displays at Gamescom 2025

  • Dean Marc
  • August 20, 2025
View Post
  • Artificial Intelligence
  • Technology

Thoughts on America’s AI Action Plan

  • Dean Marc
  • July 24, 2025
View Post
  • Technology

ESWIN Computing launches the EBC77 Series Single Board Computer with Ubuntu

  • dotlah.com
  • July 17, 2025
View Post
  • Gears
  • Technology

Samsung Galaxy Z Fold7: Raising the Bar for Smartphones

  • Dean Marc
  • July 9, 2025
View Post
  • Cities
  • Technology

Meralco PowerGen’s PacificLight starts up 100 MW fast-response plant in Singapore

  • dotlah.com
  • June 20, 2025


Trending
  • 1
    • Technology
    Huawei Launches Its First Overseas AIoT Innovation Bootcamp In Singapore
    • January 16, 2020
  • 2
    • Cities
    • Technology
    How Communications Can Power Smart Cities
    • April 24, 2020
  • 3
    • Lah!
    NTU Ranked Top 10 globally In 10 Subjects By Shanghai Ranking
    • May 27, 2021
  • 4
    • Artificial Intelligence
    • Technology
    How the UK’s plans for AI could derail net zero – the numbers explained
    • February 9, 2025
  • 5
    • Lah!
    • Society
    Majority Of Singaporeans Do Not Feel Strongly Negative About Foreigners In Singapore
    • October 13, 2020
  • dotlah-smartnation-singapore-lawrence-wong 6
    • Artificial Intelligence
    • Featured
    • Features
    • Lah!
    • Machine Learning
    • Technology
    Growth, community and trust the ‘building blocks’ as Singapore refreshes Smart Nation strategies: PM Wong
    • October 9, 2024
  • 7
    • Society
    Toilet Paper Companies Sees Revenue Spike As Consumers Resort To Panic Buying
    • April 29, 2020
  • 8
    • Lah!
    • Technology
    Singapore’s Tech Sector Steps Forward To Offer Suite Of ICT Solutions To Businesses Affected By COVID-19
    • March 6, 2020
  • 9
    • Science
    Analysis Of Global Cancer Data Shines Light On Alternative Gene “Switches” In Tumours
    • September 6, 2019
  • credit-card-avery-evans-RJQE64NmC_o-unsplash 10
    • People
    7 Reasons You Need A Good Credit Score
    • May 27, 2021
  • 11
    • Lah!
    Authentic Places To See In Singapore
    • October 11, 2019
  • 12
    • Cities
    The Impact Of COVID-19 On Future Mobility Solutions
    • May 16, 2020
Trending
  • 1
    We must empower local leaders to meet global goals – here’s why
    • November 4, 2025
  • Halloween Deals 2
    31 Spooky Deals for October 31! Halloween Specials!
    • October 31, 2025
  • 2025 Laptop Buyer’s Guide: Best Value and Performance Picks 3
    2025 Laptop Buyer’s Guide: Best Value and Performance Picks
    • October 28, 2025
  • 4
    Why climate summits fail – and three ways to save them
    • October 21, 2025
  • Bluetooth speakers 5
    Best Bluetooth Speakers Under $200 (2025 Edition)
    • October 16, 2025
  • 6
    Apple Vision Pro upgraded with the powerful M5 chip and comfortable Dual Knit Band
    • October 15, 2025
  • 7
    Apple unveils new 14‑inch MacBook Pro powered by the M5 chip, delivering the next big leap in AI for the Mac
    • October 15, 2025
  • 8
    Apple introduces the powerful new iPad Pro with the M5 chip
    • October 15, 2025
  • 9
    Singapore’s national identity excludes those who don’t look like a ‘regular family’
    • October 9, 2025
  • Smart Watch 10
    Best Smartwatches, Your Gateway to Health Monitoring and Everyday Use
    • October 5, 2025
Social Links
dotlah! dotlah!
  • Cities
  • Technology
  • Business
  • Politics
  • Society
  • Science
  • About
Connecting Dots Across Asia's Tech and Urban Landscape

Input your search keywords and press Enter.