dotlah! dotlah!
  • Cities
  • Technology
  • Business
  • Politics
  • Society
  • Science
  • About
Social Links
  • zedreviews.com
  • citi.io
  • aster.cloud
  • liwaiwai.com
  • guzz.co.uk
  • atinatin.com
0 Likes
0 Followers
0 Subscribers
dotlah!
  • Cities
  • Technology
  • Business
  • Politics
  • Society
  • Science
  • About
  • Technology

Enabling Battery-powered Silicon Chips To Work Faster And Longer

  • March 10, 2020
Total
0
Shares
0
0
0

A team of researchers from NUS have invented a novel class of reconfiguration techniques that adaptively extends both the minimum power consumption and the maximum performance of digital circuits, well beyond common voltage scaling. Such extended adaptation allows digital silicon chips to operate at lower power during normal use, and at higher performance level when necessary.

This extends the battery life under uncertain power availability in systems powered by harvesters (e.g. solar cell) or rechargeable batteries, while delivering higher peak performance to carry out on-chip data analytics upon the occurrence of events of interest. This is a key enabler for applications such as Internet of Things (IoT), artificial intelligence (AI), wearables and biomedical devices.

“Our reconfiguration techniques introduce unprecedented adaptability to fluctuating power availability and performance demand. Compared to the industry-standard voltage scaling technique, measurements on several test chips in our lab have shown that such adaptation extends the battery life of a mobile or wearable device by 1.5 times, while doubling peak performance. Our techniques can also be used to further miniaturise the battery by the same factor, while maintaining the same battery life,” explained Associate Professor Massimo Alioto, from NUS Engineering. He is the leader of the NUS Green IC Group that is behind this technological breakthrough.

He added, “As further benefit, the power-performance versatility of our circuit techniques allows semiconductor companies to simplify their chip portfolio and reduce the design cost, as the same digital design can be reused across a wide range of applications and markets.”

Assoc Prof Massimo Alioto (centre) and his team members Lin Longyang (left) and Saurabh Jain (right) showing off the prototyping boards for testing the silicon chips to demonstrate highly flexible power and performance, surpassing industry-standard voltage scaling.

The proposed techniques have led to the demonstration of accelerators and processors (for example, Fast Fourier Transform, ARM processors) with minimum energy consumption reported to date. The research behind the novel techniques has been supported by leading semiconductor companies (Intel, TSMC) as well as the Singapore Ministry of Education and the National Research Foundation of Singapore.

Data and clock path adaptation: Achieving both low minimum power consumption and higher peak performance

Most advanced mobile, IoT and AI applications require a flexible and wide trade-off between the average power (i.e. battery life), and the maximum performance that determines system responsiveness (e.g. when the screen is touched, or performing data analytics when a sensor produces data of interest).

Currently, dynamic voltage scaling is the gold standard in enabling such flexibility. Operating at voltages around 1 V leads to maximum performance and energy consumption, whereas reduction down to 0.4-0.5 V lowers energy consumption by four to five times and slows the operating speed by nearly 10 times. The drawback of this approach is that voltage scaling generally applies to a fixed digital architecture, although the optimal architecture for energy consumption and performance depends on the adopted voltage.

The NUS invention outperforms voltage scaling since its circuit reconfiguration enables better match between the architecture and the adopted voltage, and hence further reduction in energy consumption and improvements in performance at different voltages can be achieved.

figure960.jpg

The adaptive digital circuits demonstrated by the NUS team are able to extend the battery life of intelligent silicon chips by reducing the power consumption under normal use, while scaling up performance to quickly respond to occasional data events.

Assoc Prof Alioto said, “Our invention enables reconfiguration of both the “data path” where the actual processing is performed, and the “clock path” that distributes the clock signal to orchestrate the different processing tasks. In both cases, their fundamental building blocks are flexibly merged or split to create the data and clock path structure that improves either energy efficiency or performance at a given voltage.”

Compared to conventional voltage scaling, the approach proposed by the NUS Green IC group makes digital circuits more versatile and adaptive, allowing simultaneous optimisation at both ends of the power-performance spectrum.

Technical book and a complete toolchain publicly available 

To share the benefits of the team’s new technique with both industry and research groups worldwide, a technical book has recently been released to provide the background and details of the silicon chip implementation of processors, accelerators and on-chip memories. An automated design flow has also been created and publicly released over GitHub (Please visit http://www.green-ic.org/).

“In our book, we introduced and demonstrated design methodologies using solely commercial design tools, which are integrated into a cohesive design flow where clock and data path reconfiguration is incorporated in a plug-and-play fashion. We are delighted to share the software code in an open-source fashion to enable massive and rapid adoption of our novel techniques in the commercial sector and in academic research,” commented Assoc Prof Alioto.

Next steps

The NUS research team is now looking into developing new classes of intelligent silicon systems that allow ultra-wide power-performance adaptation in AI accelerators embedded in sensing silicon chips for IoT. This will lead to next-generation systems that are always available, while being able to promptly respond to external events with very significant computational performance.

In their work, the team endeavours to enable power-performance adaptation through drop-in techniques and design methodologies in existing system architectures. This allows the achievement of power-performance benefits without disrupting the design ecosystem, thus enabling a rapid and massive adoption of next-generation intelligent systems.

Total
0
Shares
Share
Tweet
Share
Share
Related Topics
  • AI
  • Battery-powered Silicon Chips
  • IoT
  • National University of Singapore
  • NUS
  • Research
dotlah.com

Previous Article
  • Technology

Investing In Deep Tech Is Akin To Investing In The Future

  • March 10, 2020
View Post
Next Article
  • Cities
  • People

Only Eight Countries Have Full Equal Rights For Women

  • March 10, 2020
View Post
You May Also Like
oracle-ibm
View Post
  • Artificial Intelligence
  • Technology

IBM and Oracle Expand Partnership to Advance Agentic AI and Hybrid Cloud

  • Dean Marc
  • May 6, 2025
View Post
  • Software
  • Technology

Canonical Releases Ubuntu 25.04 Plucky Puffin

  • Dean Marc
  • April 17, 2025
View Post
  • Artificial Intelligence
  • Technology

Tokyo Electron and IBM Renew Collaboration for Advanced Semiconductor Technology

  • Dean Marc
  • April 2, 2025
View Post
  • Artificial Intelligence
  • Technology

IBM contributes key open-source projects to Linux Foundation to advance AI community participation

  • dotlah.com
  • March 22, 2025
View Post
  • Artificial Intelligence
  • Technology

Mitsubishi Motors Canada Launches AI-Powered “Intelligent Companion” to Transform the 2025 Outlander Buying Experience

  • Dean Marc
  • March 10, 2025
View Post
  • Technology

New Meta for Education Offering is Now Generally Available

  • Dean Marc
  • February 26, 2025
View Post
  • Artificial Intelligence
  • Technology

Deep dive into AI with Google Cloud’s global generative AI roadshow

  • dotlah.com
  • February 18, 2025
View Post
  • Artificial Intelligence
  • Technology

How the UK’s plans for AI could derail net zero – the numbers explained

  • dotlah.com
  • February 9, 2025


Trending
  • 1
    • Cities
    How Asia Transformed From The Poorest Continent In The World Into A Global Economic Powerhouse
    • October 28, 2019
  • person-using-macbook-pexels-cottonbro-5054213 2
    • Features
    • People
    Can Online Therapy Improve Mental Health During The Pandemic?
    • May 6, 2021
  • 3
    • Lah!
    • Technology
    Strategic Leadership Programme
    • October 9, 2021
  • 4
    • Technology
    International Tech Park Gurgaon Begins Operation With Four Major IT Companies On Board
    • August 14, 2019
  • 5
    • Lah!
    • Society
    Community And Mentorship Help Women Entrepreneurs Thrive
    • November 23, 2021
  • 6
    • Artificial Intelligence
    • Technology
    IBM contributes key open-source projects to Linux Foundation to advance AI community participation
    • March 22, 2025
  • 7
    • Lah!
    LTA Pilots New Initiative To Help Commuters With Invisible Medical Conditions
    • October 3, 2019
  • 8
    • Lah!
    • Technology
    NTU Singapore Scientists Develop Device To ‘Communicate’ With Plants Using Electrical Signals
    • March 17, 2021
  • Learning 9
    • Science
    3 Reasons We Use Graphic Novels To Teach Math And Physics
    • August 21, 2023
  • 10
    • Cities
    • Technology
    ABB’s Technology In Singapore’s First Dual-Mode Desalination Plant Helps Tackle Water Scarcity In Region
    • September 24, 2021
  • 11
    • People
    • Technology
    How Universities Can Play A Pivotal Role In Building Economic Resilience
    • January 19, 2024
  • 12
    • Lah!
    Singapore Supports Innovative Enterprises To Go Global
    • August 28, 2019
Trending
  • college-of-cardinals-2025 1
    The Definitive Who’s Who of the 2025 Papal Conclave
    • May 8, 2025
  • conclave-poster-black-smoke 2
    The World Is Revalidating Itself
    • May 7, 2025
  • oracle-ibm 3
    IBM and Oracle Expand Partnership to Advance Agentic AI and Hybrid Cloud
    • May 6, 2025
  • 4
    Conclave: How A New Pope Is Chosen
    • April 25, 2025
  • 5
    Canonical Releases Ubuntu 25.04 Plucky Puffin
    • April 17, 2025
  • 6
    Mathematicians uncover the logic behind how people walk in crowds
    • April 3, 2025
  • 7
    Tokyo Electron and IBM Renew Collaboration for Advanced Semiconductor Technology
    • April 2, 2025
  • 8
    Tariffs, Trump, and Other Things That Start With T – They’re Not The Problem, It’s How We Use Them
    • March 25, 2025
  • 9
    IBM contributes key open-source projects to Linux Foundation to advance AI community participation
    • March 22, 2025
  • PiPiPi 10
    The Unexpected Pi-Fect Deals This March 14
    • March 14, 2025
Social Links
dotlah! dotlah!
  • Cities
  • Technology
  • Business
  • Politics
  • Society
  • Science
  • About
Connecting Dots Across Asia's Tech and Urban Landscape

Input your search keywords and press Enter.